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The rapid increase in computer power observed over the last few decades has
allowed the development of computer simulation models for C and N cycling
in agricultural and natural ecosystems. Models of the N cycle may be useful
to understand and manage ecosystems so as to protect environmental quality
and ensure long-term sustainability. In this chapter, we first present general
concepts on systems, models, and model development, followed by a review of
current approaches used to model different transformations in the N cycle. We
conclude with a general discussion of the current status and future research
needs in the area of N models. We want to emphasize that it is not our intention
to provide an exhaustive review of the different N models available, but instead
to describe representative approaches used by the different models in existence.
Detailed reviews of several C and N models can be found in publications by
McGill (1996), Molina and Smith (1998), Ma and Shaffer (2001), and McGechan

and Wu (2001).

Systermns, Models, and Soffware Tools

Systerns and Models

A system is a set of components that act and interact together to achieve a
certain goal (Jones and Luyten, 1998). Systems are composed of subsystems, sub-
systems are composed of sub-subsystems, and so on until the maximum level of
resolution allowed by current scientific knowledge is reached. An example of a
system is the set of components of the N cycle in soil. A model is a simplified rep-
resentation of a system (Ford, 1999), and as such it attempts to capture the main
components and behavior of that system.
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Classification of Models

Models can be classified according to different criteria (Ford, 1999). Based on
their nature, they can be divided into mental, physical, and symbolic. Symbolic
models can in turn be mathematical or nonmathematical (e.g., maps), and math-
ematical models can be divided into analytical and numerical (depending on the
type of mathematical solution used). In general, computer simulation models are
symbolic, mathematical, and numerical.

Based on the type of madeling approach, computer simulation models can be
divided into empirical or mechanistic (Kelton et al., 1998). Empirical models use
empirical relationships between variables, whereas mechanistic models attempt
to model the detailed mechanisms through which variables interact. Values taken
by the parameters of empirical models have no restrictions, while those of mecha-
nistic (process-oriented) models are limited by their biophysical connotation; for
example, 5 to 13 is a likely range for C/N ratios of microbes. As such, mechanistic
models have more restrictions on their behavior but include more information
than the empirical simulators. Based on time, simulation models are classified
into static (variables do not change with time) and dynamic (variables change as
a function of time), and, based on how variables change, they are divided into
continuous and discrete. In continuous models, variables change smoothly over
time and are not restricted to integer values. In discrete madels, variables change
in steps instead of smoothly and are usually restricted to integer values. Based on
the role of probability, models are divided into deterministic (no probability used)
and stochastic (probability used).

Most computer simulation models of the N cyele are partly mechanistic
and partly empirical. They are also dynamic because they model changes with
time, and they are continuous because the sim ulated variables (N pools) change
smoothly over time. For the most part, simulation models of the N ¢ycle have been
deterministic because incorporating probability requires additional computation-
al time, consequently slowing down program execution. Fortunately, the increase
In computer power achieved over the last few decades has allowed model devel-
Opers to start exploring stochastic implementations, which may generate more
realistic representations of natural systems.

Terminology Used in Simulation Modeling
Common terms used in simulation models include variable, parameter, constant,
and fime step. A variable is a quantity that changes during a simulation. There
are state variables, which describe the state of the system; rate variables, which
determine the rate at which State variables change in dynamic models; auxiftary
variables, which are used to compute other variables; and driving variables, which
characterize the influence of external factors. Parameters of empirical models can
take any value but remain constant during a simulation: their value can change be-
tween simulations. In contrast, a constant is a quantity whose value never changes,
as in the case of the gravitational constant. Time step refers to the time increment
used to advance time during the simulation. It defines the temporal resolution,
which can change to fit the requirements of individual subsystems within the
model or environmental crcumstances. Similar considerations apply to the spa-
tial resolution whereby a tomputational step is defined to integrate processes over
distances. For example, gas diffusion in soi] calls for lower temporal and spatial
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resolutions than N biological processes, a requirement that complicates the simuy-
lation of CO, release at the soil-air interface,

Steps in Model Development

Ideally, the development of a model would procg?ed according to ‘t}?e follow-
ing steps: (i) statement of objectives, (ii) system identih’catiqi, (z:ii) spgcxﬁcat?qn'of
component behavior, (iv) computer Implementation, (v} venfwatmn,y (w) sensxtlyxty
analysis, (vii) calibration, and (vini) validation (Jones and Luyten, 1998; Ford, 1999).

Staternent of Objectives

I this crucial but often overlooked step, the intended end product and its use
should be clearly stated to serve as a guide in subsequent steps. In general, simu-
lation models of the N cycle are developed for research Or management purposes;
Research models are helpful to test hypotheses and increase our understanding of
a particular system. In contrast, management models are helpful to predict system
behavior, with the goal of improving its management. Although the distinction
between research and management models is not sharp because research models
can eventually become management models, it is important to clearly define ob-
jectives at the start of a modeling exercise to have a well-defined project goal.

System Identification

This step consists of identifying the system tomponents (state variables and
rate variables), as well as the system environment (driving variables such as man-
agement practices and climate). The system tomponents to be included depend
on the goals of the modeling exercise, as outlined in the first step. ane the sys't?m
tomponents are identified, the system environment needs to be identified. The
environment is composed of all those variables that affect the system but are not
affected by the system (Neelamkavil, 1987; Jones and Luyten, 1998).

Specification of Component Behavior

The first task in this step is to select names for the variables to be included in
the model. ldeally, these names should be mnemonic to facilitate model develop-
ment and use. After selecting variable names, a flow diagram of the model should
be developed (Ford, 1999), and the mathematical form of the relationships be-
tween variables should be formulated. Coefficients, parameters, and constants for
these mathematical relationships should be obtained from the literature, if avail-
able, or from experiments specifically conducted for that purpose.

Computer Implementation

Ifa programming language is used to implement the model, 4 sequence com-
monly used for the program consists of (i) declaration and documentation of vari-
ables, (i) initialization of parameters and constants, (iti) initialization of state vari-
ables, and (iv) time/space loop. The time/space loop is an iterative calculation process
in which time/space is incremented by an amount selected for the temporal and
spatial resolution, rate variables are calculated, state variables are updated, and ax.}y
desired output js generated. When the time/space loop has Progressed to tbe spatio-
temporal dimensions desired for the simulation, the program stops execution.
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Implementation of models using a programming language requires expertise
in the language of choice, as well as considerable time for correcting syntax er-
rors. If a visual programming tool (see below) is used to implement the model, the
programming code is written by the software as the flow diagram is developed
on the screen, and as relationships between variables are defined. Although the
model developer needs to become familiar with the visual programming tool of
choice, learning these tools usually takes much less time than learning the syntax
of a conventional programming language.

Verification

Verification consists of checking the computer code to ensure that it correctly
fepresents the mathematical model of the system. This is g step that needs to be
conducted independently of whether a regular programming language or a visyal
Programming tool is used for model development.

Sensitivity Analysis

A sensitivity analysis is conducted to identify parameters and/or driving vari-
ables to which the model is very sensitive, Identifying these parameters and/or
driving variables is important because it helps the developer to allocate resources
to measure the parameters and driving variables needed, and to simplify the mod-
el by removing processes that do not impact on the dynamics of the system. Those
parameters or variables t6 which the model is more sensitive should be measured
with more accuracy than those to which the model is less sensitive.

A sensitivity analysis begins by identifying output variables of interest and es-
tablishing a set of best estimates of each parameter and driving variables. Simula-
tions are then run with a range of values for each parameter to observe changes in
the output variables of interest. There are several methods to combine the range of
values for each parameter in the simulation runs for sensitivity analysis. The most
comprehensive method uses a factorial combination of af] parameter values to be
tested, allowing the determination of not only the main effect of each parameter,
but also the degree of interaction between parameters (Ford, 1999). One drawback
of this method, however, is that it may require a large number of simulations, as
indicated by the equation

Number of Simulations = {(Levels of Each Parameter)Number of Parametors

According to this equation, it would require 177,000 simulations to run every com-
bination of 11 parameters at three levels for each parameter. It is clear that con-
ducting sucha la rge number of simulations may require more time than the model
developer has available. Consequently, other methods have been developed for
sampling the different parameter combinations.

One of these methods is random sampling, in which the parameter values for
each run are selected at random. For example, in the Monte Carlo approach, the
value of each parameter for a given run is taken from a specified probability for
each parameter. Although random sampling requires fewer simulations than a
full factorial combination, it stil] requires a large number of simulations to ensure
a reasonable exploration of the sample space. Thus, other methods have been used
to reduce the number of simulations while sti]| exploring all regions of interest of
the sample space. For example, Taguchi methods (Clemson et al,, 1995; Ross, 1996)
use fractional factorial designs to evaluate the main effect of parameters as well
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The Steps in mode) devetcpment describey above are general and (,, Not neceg.
sarily gUarantee the achievemeny of the stateq Objectiveg by the eng of the Jagt Step,
Once the validation step jg completed, one Or more Uterationg thmugh the differen;
Steps mg ¥ be needeq to furthey refine the Mmodel or iy, Prove jtg Performance.

Softwore Tools

Most Computer Simulation Models haye been implemented in prt)cess‘ariented
programmmg Ianguages such ag FOR'IRAN, which “ommoniy 50 the Structyre
and ﬁexibility to develop user- and developer~friendly models. The current gyl

time, Although to date very few N Models haye been devetoped With thege new
Ianguages (Shaffer et al, 2000, their yse i4 expected o Increase i, the futyre.

Ornie of the factors that hag limited the development of Simulation maodels jg
the neeq for developers to haye EXpertise in the programming Ianguage of chojce,

odelMake, (Cherwaey) Scientifje Limiteq, Oxford, UK), ensim ( Ventanga Systems,
Betmont, Ma), Powe,rsim (Powersim Corp,, Hemdon, VA), and VisSim (Visual 5.
lutions, Westt'ord, MA) A Stella implementation of the N Model NLEAp (Shaffer
et al, 1991 iq Currenty available (Bittrman et al 2001), and more implementation
of N models With simjay tools are likely in the futyre.

— ——_ 1 Te— Y

Simulatiop Models of the N cycle attempe ¢, Capture the Mmain Processes (),
transformatians in the System of interes, Models Simulate ¢he fate of thege pro-

first feview the most “Ommonly (g types of kinetjcs and then e describe the
different kinetj¢ approacheg used to mode) Some of the MOst imporgang transtor.

Common Kinetic Models
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S p
dS/dt = gysp ., 1
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Second—Order Kinetics
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Portiop, !t the Ation to ¢ ® Concen Aion of
Ss B rder WIth re. and g) Mking
(& [z
1al b S5.0n ¢y, 8Toyyg according to fzrst—orde?r kinetz(‘s, the
B
Where ) Ls biomass U time 0 ang 7S the firsg
biaj biomass.
Integrating E
Sfor
Tels




Cabrera, Molina, & Vigit

where [ 4 the “Nzyme, S is the Substrate, fg 15 the er12yme~substrate complex, p

is the Product, ang IS a rate coefficient, The rate of formation Of product p is first

[10]
The Concentratjey, Of E a shopt time after the start of the Teaction can pe cal-
Culated 44

[57::[EL“~[ESI [11)
where [E]D is the Mitiz) toncentratioy, of E. Also, the dissociation Constarny K for
the ES “omplex cap pe Calculated a¢

K. = [Elis)Es) [12]

Substituting Eq. 11 1] into Eq. [12] ang solving for [ES] vields

[ES] = [EIU[S]/(KH, 5] (13]

Substituting Eq. f13) into Eq. (10} yieldq

dP/df ~ z'[E]U[S]/(Km +[S)) {14]

The eXpression kfg I, represents the maximn Um velocity of g Teaction, whijep occurs
when al] the enzyme molecules are in the com Plex form Fe. Therefore jf V. =HE Jim

dP/df ~ VISIK . ¥Is) [15]

Equatiop [15] is the COMmon EXpression for Michae!is~~Menten kinetics. The
Michaeli&Menten Constant, K, Corresponds te the substrate CONCentration 4t which
half of the Maximum feaction rate (1/2 V. )is achjeved. When the Substrate concer-
tration jg very low, K. +[S]is approximately equal to K., and the reaction jg equiva-
lent to tirst-orde, kineticg, When the substrate Loncentration is very high, K+ [S]is
approximatefy equal to [S] ang the reaction, is equivalent ZeT0-0rder kinetjes,

Michaelis~Menten kineticg ig “ommonly ygeq t0 mode] the trang
Of substrate that are Present in the 501l solution, Parameter for the Michaeljg..
Menten equation (V_and K,) are best determineq by nonlinear oy pye fitting of | )
[15]. A less Preterable IPproach ig ¢ convert Eq. [15] into 4 linear form ang us
linear regression to find slope ang mtercvpt values [
estimate K and V. values (Miiller, 1999y,

Monog Kineticg

In Moneg kineticg the rate of tmnsﬁ)rmation Of substrate Sis Proportionaj ¢,
the rate of Browth of ,4 microbigyf Population g that yseg Substrate (Koch, 1998,
The rate of Browth of the Mmicrobiy] Population i 8iven by
dB/dt = [Te]
where |, = (v [s ])/(/\"m +[S], Vs the Mavimum rae of Browth, and x IS a constant.
The rate of h'ansformation Of substrare Sis Modeled 44

dS/dt = ~dB/df « 17y

m

[17]

Where V iq the efﬁcioncy of biomags B (biomass hwnwd/mbstratc used),
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by the decay of cither the SOM pools (microbial pool included) o residues. Aj

models simulate the residue-driven process of N mineralizati0n~~imm0bi1izatior

but NCswa P/NCSOIL is the only model that simulates the M[T and accounts fo,
the dynamics of tracer N (Moling etal, 199¢; Nicolardot et al., 1994). The observed
exchange between inorganic and organic N is so rapid even jp the absence of reg,.
dues that its simulation requires a high rate of microbial Succession obtained by a
high decay rate for the microbial pool (Nelson et al., 1979). Nevertheless, the mj.
crobial biomass i Sustained by the decay of the other SOM pools that can drive the
MIT with the net result of N mineralization for many years. Whenp the MIT i not
simulated and the mode! does not aceount for tracer N kinetics, net N mineraliza.
tion in the abserce of residues is obtained by the release of Morganic N from one

or several SOM pools, as described in itg simplest form by the N, model.

MineraIization»immobili;:ation rates are controfled by the rates of residueg
and SOM decay, which in turn are controlled by temperature. Iy general, thege
rates are very smajj near 0°C and increase linearly or €Xponentially yn¢j they
reach a maximum a¢ 30 to 40°¢C {(Liet al, 1992; Rodrigo et al,, 1997, Rates are
commonly considered to decrease ag temperatures increase aboye the maximum
temperatyre. Rodrigo et a], (1997, compared the temperatyre factors of nine Cand
N transformation models and found large differences among them. Becayge these
differences can lead to different results for the Same environmenty| conditions,
the authors concluded that more attention should pe paid to consistency betweer
models. The yse of the same temperature ang Moisture factorg for residye and
SOM decomposition may be adequate when residues are incorporated Into the
soil but may not be appropriate when residues are left op the soil surface (Que-
mada and Cabrera, 1997y,

Similarly, rates of mineraIization-immobilization are small at Jow water con-
tents, increase up to field capacity, and decreage as the soj] becomes water satu-
rated. In CERFES-N (Godwin and Jones, 1991), the moisture factor is 0 when the
soil is air dry and increases linearly tq reach 1 at the drained upper limit (fielq
capacity). As water content increaseg above the drained upper limit, the moisture
factor decreases linearly to reach avalue of 0.5 4¢ saturation. DNpC (Lietal, 1992)
and NCSwa P/NCSOIL yse 4 relationship observed for several sojlg by Linn and
Doran (1984): the moisture factor js () below 109 water-filled POrosity and increas.
es linearly to reach 1 at 60% water-filje Pporosity. Above 607, water-filled Porosity,
the moisture factor decreages linearly to reach values of 0.5 a¢ 80% water-filled po-
rosity and 0.4 at 1009, water-filled porosity. The optimum water Potential for C de.
cOmposition processes has been feported to vary from ~0.010 (Andrén etal., 1992)
to ~0.178 Mpa (Moore, 1986). In PHOENIX (McGill et al,, 1981), different water
potential functions are used for bacterig] and fungal activity to reflect their differ-
ent tolerance to water stress. In some cases, the moisty re fesponse functiong differ
among models, which may lead to different simulated resylts under the same e,.
vironmenta] conditions (Ma andg Shaffer, 2001; McGechan and Wy, 2001).

The effect of the C/N ratio of the residues and SOpm Pools on the rate Of residye
decay is considered by severy] models. The gveral] effect is to reduce the rate of resi-
due decomposition when the agents that decay are N starved. I CERES-N, the C/N
ratio factor has 4 value of [ when C/N ratio is 25 and decreaseg exponentially a5 the
C/N ratio ncreases above 25, In NCSO1 L./NCSWAWR the C/N ratio factor decreages
exponentially as the ratic, of the daily potentia] ¢- decomposition to the available N
(N potentialj v released during decomposition + norganic N) increases (Molina et al,
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1983). In NLEAp

(Shaffer ot al, 2001) the C/N ratio factor hag avalue of 2 ¢ at C/N =
9, 1.0 at C/N = 25,057 at C/N =4, and ()29 4 C/N =100, The valye of the C/N ratio
factor between these points is calculated by linear Interpolatiop,
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Cation. The AMMOonium thy, undergoeg Nitrification jg that in exXcess of 5 maximum
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pH factors; and NPF js the nitrification potential factor based on past nitrificatior
potential and current environmental limits on nitrification,

Similar approaches are used to model nitrification in the models DAISsy (Han
sercet al, 1991) and CANDY (Franko et al, 1995),

In more detailed models, Monod kinetics has been used to simulate the inde.
pendent growth of each of the two nitrifier populations: Nitrosomonas and Nitro-
bacter (Darrah et al, 19854, 1985b, 19864, 1986b), The Browth of Nitrosomonas has
been modeled as

ANB,/df = (V, NH)AK,, +NH,) x NB, x TF x MF « IF [49]

where NB, is Nitrosomonas biomass, NHQ is the ANmMonium in the gpij] solution,
V.1 18 the maximum rate of growth, K., is the ammonium concentration at which
growth rate equals 1/2 V..o TF and MF are temperature and moisture factors, and
[Fis the inhibition factor due to pH and osmotic potential.

The production rate ot NO, is proportional to the growth of the Nitrosomo-
nas population;

dNB,/dt = (szNOz)/(sz +NO,) x NB, x TF x MF « IF [51]

where NB, is Nitrobacter biomass, NO, is nitrite in the soil solution, v » 15 the maxi-
mum rate of growth, K 2 18 the nitrite concentration at which growth rate equals
Qne-half of V... TF and MF are temperature and moisture factors, and [f is the
inhibition factor due to PH and osmotic potential.

The rate of production of NO, is proportional to the growth of the Nitropye.
ter population:

dNO,/dr = dNB, x 17y, [52]

where Y, is the biomass formed per mole of NO," used (or mol of NO, produced).
Models that use Monod kinetics for nitrification include Phoenix (McGil) etal,

modeling approach to nitrification may be usefu] to study and describe situations
that lead to NOZ‘ accumulation in sojls (Gee et al,, 1990; Jones and Schwab, 1993;
Burnes et al, 1995; Smith et al, 1997; Chandran and Smets, 2000).

Because nitrifiers are autotrophic and require CO, for thejr srowth, Grant
(1994) developed a model for nitrifier growth that includes CO, as substrate and
NH, or NO," as the source of energy. The equation used to model Nitrosomomas
growth is as follows:

dNB /dt = TF x MF x 1/ INH/(K,, +NH,)]

x (CO;‘,/(KCO2 +CO,) x NB, [53]

where NB, is the Nitrosomonas biomags, NH, is ammonia concentration in soi} go.
lution, CO, is the CO2 concentration in soil solution, V_ | 15 the maximum rate of
growth, K is the ammonium concentration at which Browthrateis 12V g

. ) ) . N mi’ ooy
CO, concentration at which growth rate is V2V, ., and TF and Mr are temperature

and moisture factors.

is
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Int later work, Grant (1995) extended thig model of nitrification by induding
O evolution during nitrification, whijch Is an Important Process for environ.

Confrol!ing Factors

The general form of temperatyre factors used to modify nitrification rates has
been described Previously. Nitrification ig Considered to INcrease as temperatyre
increases from 0°C to a Mmaximum temperatyre that varjeg from 20 1o 35°C, de-
pending on sej] type and geographic location (Malhi and McGill, 1987, Godwin

’ )

DNDC, the percentage of water saturation is used to control the rate of nitrifica-
tion (Linn and Doran, 1984): the moisture factor i () when the water-filled Porosity
is 0%, and increases linearly to reach 1 at 609, water-filled porosity; beyond that
point, the factor decreases linearly untif it reaches a valye of Oat1009% water-filled

The soil ppy effect on nitrification (PHE, 01} has been modeled with first-order
(EPIC [Williams, 1995]; CEREs.N [Godwin and Jones, 1991 Dor higher-order (Darrah
etal, 1986h) polynomials, SOILN (Johnsson etal, 1987) uges 4 PH factor of the form

PHF = (pH pHmm)/(pHmM “PH_ ) [54)

where pH is the soil pH, pH_ s the minimuam PH for Nitrification, and pH_ s
the maximum pPH for nitrification,

The effect of Osmotic potentig) (OP) on nitrification has been modeled with 4
second-order polynomial (Darrah et af,, 1986a) and with €Xponential functiong of
the form k=44 1, eXp(c x OP), where K is the rate of nitrification (Low etal, 1997).

Denitrification

Denitrification is a biological Process in whijch Microorganisms use NO,,
NO,, and N O as electron acceptors (instead of O,), with the consequent prodye.
tion and evolution of N,O and N, gases. The process occurs unger anoxic condj-
tions and the mictoorganisms responsible for it Trequire organjc compounds ag
energy and C sources (Alexander, 1977),

Modeiing Approaches

Modeling denitrification presents a specia) Problem because of the difficy-
ty of modeling anoxie Microsites in the soil. Consequcnt}j,’, Most comprehengjye

Modeling the Nitrogen ¢

models of s l-plant syst
out the goil according to
uses zero-order kinetics,
2000) use first-order kine
Jones, 1991) use second-oy

~dNO,/df =  x MF >

where k is the second-orde
ture factors, ¢ is the conce,
the nitrate concentration in

Michae}is~Menten kin
2000) and SOTLN (Johnssor

~dNO/dt = MF x T ,

A similar type of Micha
(DB} is used in the Phoenjx ,

~dANO/dt = MF « Tp(y

Van Veen and Frissel (1¢
mass (B} under anoxic condii
to calculate the rate of denijtrj

~dNOB/dz‘ =dB/dt x 1/y

Leffelaar and Wessel (195
soil samples incubated in the
late the growth of denitrifiers
NO, NO,, and N,Oy:

dB/dt = g
where B is the denitrifjer popt
C)(E,/(KE‘ +E )] is the growth r
tion of electron acceptor f; | =
tively; Hei may 15 the maximum
in solution: K and Ks, are the

The use of each electrop 4
maintenance requirements:

dE‘/df = (Hh/Yl‘x max * ”I!i

where Yy, 15 the maximum
maintenance coefficient with ]
The gases produced by 4,

dN,O/dt = (dE/dt - df
dN /dt = (dE /dt)

The mode] of Leffelaar ar
(Lietal, 1992), a model that
agricultural sojls, To take intg
rates based un cach electron 5



. Cabrera, Molina, & Vigil

odel of nitrification by including
1 important process for environ-

dto modify nitrification rates has
dered to increase as temperature
that varies from 20 to 35°C, de-
Valhi-and McGill, 1981; Godwin
, 1995),
to modify nitrification rates have
ffect of soil moisture on nitrifica-
n and Jones, 1991), the moisture
ncreases linearly to reach 1 at the
Irained upper limit, the moisture
| -ation. In NCSWAP/NCSOIL and
I ed to control the rate of nitrifica-
" 50 when the water-filled porosity
sater-filled porosity; beyond that
5 a value of 0 at 100% water-filled
noisture factor is 0 at a water po-
reach 1 at 0 MPa (saturation). It
differ in their effects of moisture
1oisture factor is 0 for CERES-N
eems warranted to obtain consis-

1as been modeled with first-order
tes, 1991]) or higher-order (Darrah
1987) uses a pH factor of the form

[54]

oH for nitrification, and pH,_  is

ication has been modeled with a
1d with exponential functions of
of nitrification (Low et al, 1997).

fdich microorganisms use NQO,,
),), with the consequent produc-
<ess occurs under anoxic condi-
require organic compounds as

roblem because of the difficul-
equently, most comprehensive

4Tt 2ol 2y

| i
4
b
&
4

i

e

e A ok e T

Modeling the Nitrogen Cycle 721

models of soil-plant systemns consider denitrification to oceur uniformly through-
out the soil according to a specified type of kinetics, NCSOIL (Molina et al., 1983)
uses zero-order Kinetics, NLEAP (Shaffer et al, 1991) and RZWOQM {(Ahuja et al.,
2000) use first-order kinetics, and other models such as CERES-N (Godwin and
Jones, 1991} use second-order kinetics:

~dNO,/dt =k < MF « TF x C x NO, [55]

where k is the second-order coefticient, MF and TF are the moisture and tempera-
ture factors, C is the concentration of water-extractable C in soil layer, and NO; is
the nitrate concentration in soil layer.

Michaelis-Menten kinetics is used in models such as LEACHM (Hutson,
2000y and SOILN (Johnsson et al., 1987:

«»dNC)ﬂ/dt =MF x TF x (VmI\IOj’)/(Km + NO}) [56]

A similar type of Michaelis-Menten expression including denitrifier biomass
(DB) is used in the Phoenix model (McGill et al., 1981):

-dNO/dt = MF x TF(V NO})/(Km +NO,)DB [57]

Van Veen and Frissel (1981) use the rate of growth of the heterotrophic bio-
mass (B) under anoxic conditions together with its efficiency of use of NO, Yios)
to calculate the rate of denitrification:

~dNO/dt = dB/dt = 1/, "

Leffelaar and Wessel (1988) developed a detailed model of denitrification for
soll samples incubated in the laboratory. The model uses Monod kinetics to simu-
late the growth of denitrifiers and their use of the different electron acceptors (O,
NO3', NOZ“, and NZO): ?

dB/dt = uB [59]
where B is the denitrifier population; u is the growth rate =3 M g, = g, max{C/(Kc +
CUE/(K,, + E)] is the growth rate based on electron acceptor E; E is the concentra-
tion of electron acceptor i; 1 = 1, 2, 3, 4 refers to O, NO,, NO,, and N,O, respec-
tively; He . is the maximum growth rate based on electron acceptor E; C is the C
in solution; K_and K, are the Michaelis-Menten constants for C and 22

The use of each electron acceptor is calculated taking into account growth and
maintenance requirements:

dE/dt = (/Y o + m E/E}B [60]
where Y, is the maximum growth yield on electron acceptor E, and m_ is the

maintenance coefficient with respect to electron acceptor 2
The gases produced by denitrification are then estimated as

dAN,O/dt = (dE /dt ~ dE /dt) 161]
dN,/dt = (dE /dF) [62]

The model of Leffelaar apd Wessel (1988) was later incorporated into DNDC
(Li et al, 1992}, a mode! that simulates the evolution of N,O, CO,, and N, from
agricultural soils. To take into account field envvironmental conditions, the growth
rates based on each electron acceptor are multiplied by temperature and pH fac-
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Modeling Approaches and Controlling Factors

Several models of ammonia volatilization have been developed to simulate
ammonia loss from manures and fertilizers. A detailed review of several of these
models was presented by Ni (1999). In most mechanistic models of NH, volatiliza-
tion, the transfer of NH, from the soil surface to the atmosphere is expressed as a

function of a concentration gradient:

NH, Flux = r((INH L~ [NFLL,.) [63]

where 7 is the convective transfer coefficient, [NH,],,, is the NH, gas concentration
at the soil surface, and [NH,], is the NH, gas concentration in the free air stream.

Because in open fields [NH,] _1s very low, many models assume this concen-
tration to be zero. Therefore, the NH, flux can be calculated by knowing the con-
vective transfer coefficient and the NH, gas concentration at the soil surface.

The mass transfer coefficient is usually modeled as a function of one or more
of the following variables: air velocity, temperature, surface roughness, air density,
and air viscosity. Ni (1999) presented a table with 12 approaches used by different
models to estimate this coefficient.

The NH, gas concentration at the soil surface is commonly estimated from
Henry’s constant and the NH, concentration in the soil solutioru

[N}(I3}surf = [N}{"%]sol’/Kh [64]

where [NH,]_, is the NH, concentration at the soil surface, [NH,]_, is the NH, in
the soil solution (mol N L), and Kh is Henry’s constant expressed as a dimen-
sionless ratio.

In this equation, the Henry’s constant is defined as a dimensionless ratio of
the liquid gas phase and molar gas phase concentrations, and it decreases as tem-
perature increases (log Kh =-1.69 + 1477.7/T, where T is absolute temperature
[Sherlock and Goh, 1985)). Therefore, the concentration of gaseous NH, at the soil
surface increases with temperature.

The concentration of NH, in the soil solution can in turn be estimated from
the dissociation constant of NF ', the concentration of N, in solution, and pH:

(NH,],,, = (KAINHL)/H'] [65]

where Kd is the dissociation constant, INH,'],, is the concentration of NH,* in the soil
solution (mol N L, and [H']is the concentration of H" in the soil solution (mol L.

The dissociation constant increases with temperature (log Kd = -0.09018
_ 9729.92/T, where T is absolute temperature {Sherlock and Goh, 1985]), so the
concentration of NH, in solution also increases with temperature. Ni (1999) lists
different forms of the dissociation constant used in different models.

To estimate the concentration of H" in the soil solution, some models include
a mechanistic model of so0il alkalinity (Rachhpal-Singh and Nye, 1986; Sadeghi et
al., 19883, whereas Ni {1999} uses a regression equation based on the ratio of CO,
release to NH, release.

Because it may not be practical to model or measure NH,™ in solution to cal-
culate the concentration of NH, in solution, Sherlock and Goh (1985) derived an
equation to estimate NH, in solution from total ammoniacal N in sotl, which is a
variable commonly measured. Total ammoniacal N is made up of ammoniacal N
in exchangeable sites (mol N kg') and ammoniacal N in solution (mol N L7). To
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express both pools of N in the same units (mol N m %), ammoniacal N in exchange-
able sites (mol N kg ') is multiplied by bulk density (kg m™), and ammoniacal N in
solution (mol N L'} is multiplied by volumetric soil water content (L m):

[NFL] =[NH_] /[6(1 + D)1 + [H'[/Kd)] [66]

where [NH |  is the total ammoniacal N in soil (mol N m %), 8 is the volumetric
soil water content (L. m~), and D is the ammoniacal N in exhangeable sites divided
by the ammoniacal N in solution.

Combining the equations presented above, Sherlock and Goh (1985) derived
the following equation for estimation of ammonia volatilization:

NH, Flux = (rf[NH_],_)/[(Kh x 6(1 + D)(1 + [H'}/Kd)] [67]

This equation reflects the effects of water content, pH, and cation exchange
capacity on the rate of ammonia loss. Other factors implicitly reflected in the equa-
tion are air velocity (which affects rj and temperature (which affects Kh and Kd).

Hengnirum et al. (1999) presented a model of ammonia volatilization that is
also based on total ammoniacal N. This model considers the effects of temperature,
cation exchange capacity, and air velocity:

NH, Flux = K[NH_], x 108 ™0 x F__ x F [68]

to

tot

sol

tot

where K is the transfer coefficient, T is the temperature (°C), T, _ is the base tem-
perature at which K was determined, £, is the cation exchange capacity factor = 1
- 0.033 CEC (cmol_100 pg g), and F__ =144 + 0.16 In(air velocity; km h™').
Ammonia volatilization has also been modeled with empirical regression
equations. For example, Katz et al. (1998) developed an equation to estimate am-
monia volatilization after application of liquid cattle manure to grassland. The
variables included are total ammoniacal N in the manure, saturation deficit of the

air, and application rate:
NI {3 Flux (kg N ha')=(19.41 TAN + 1.10 5D - 9.5]1 NO.02 AR +0.36) [69]

where TAN 1s the fotal ammoniacal N of the manure (g N kg '), SD is the satura-
tion deficit of the air (mbar), SD = (1 ~ RH) x 6.112 exp{(17.67 T)/(243.5 T)}, T is
temperature (°C), RH is relative humidity, and AR is application rate (t ha'').

Although empirical regression equations are limited in terms of improving
our understanding of the processes involved, they may be useful for managing
applications under specific conditions.

Current Status and Research Needs

Mechanistic models moved our knowledge of the C and N cycles from a qual-
ttative description to a dynamic dimension controlled by rates of transformations.
Models have shown the large extent to which those rates are sensitive to climatic
variations on a day to day basis—a fact the field practitioner is keenly aware of [t
15 thus not surprising to find that models have not been of great help to define crop
and environmental management, considering the vagaries of climate prediction.
Thirty years are required to characterize mean climatic data at one site. Manago-
ment practices based on simulated scenarios for average climates must therefore
take a long-term view, which is not realistic in today’s sociocconomic context, It
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can be said, however, that reliable soil-crop models will be available when climate

models have been refined.

The soil-crop system is extremely complex, yet, through the interaction of afew
rates of N and C transformations expressed by simple mathematical expressions,
examples of successful simulation of complex kinetics of total and tracer C and N
in soil and crop have been obtained. Thus, the reductionist approach seems valid to
obtain a quantitative understanding of C and N dynamics in agroecosystems. There
is, of course, room for improvement with models of increased complexity. The func-
tion of the soil fauna on Cand N transformations requires more attention (De Ruiter
et al,, 1994; Fu et al., 2000). For example, soil nematodes and protozoa that increase
the rate of N immobilization may have a Jarge impact on the effect of elevated CO,
concentrations on the global C and N cycles (Brimecombe et al., 2000).

The definition of the soil initial conditions, particularly the imtial levels of res-
idues and SOM pools, is still performed by calibration. However, progress can be
made to alleviate this difficulty either by identifying those chemical fractions that
correspond to the SOM pools, or by including chemically and physically defined
fractions into deterministic simulation models (Xin-Tao He et al., 1988; Lemaitre et
al,, 1995; Cambardella, 1997; Paul et al., 1997; Xu et al., 1997; Curtin and Wen, 1999;
Schmidt et al., 1999; Selles et al., 1999). Similarly, crop residues are categorized in
model pools that reflect the chemical composition of the residues. The definition
of residues’ pools by proximate analysis has proven to be helpful to quantify their
decay kinetics and impact on N transformations (Corbeels et al,, 1999; Henriksen
and Breland, '1999; Trinsoutrot et al., 2000a, 2000b).

Fine tuning of some parameters of Nl transformations requires more attention.
Simulated N kinetics are very sensitive to the efficiency of C incorporation in the
biomass, and the C/N ratio of biomass pools. Efficiency factors of 0.5 and C/N ratio
values ranging from 6 for bacteria to 12 for fungi are usually assumed. However,
adjustment of these values is often needed to fit simulated to experimental data (Bla-
godatsky and Richter, 1998; Henriksen and Breland, 1999; Verburg et al., 1999;). Not
only is growth but also the C/N ratio of plants increased by elevated CO, concentra-
tions, thus modifying the MIT in ways that must be included in mechanistic models
of global ecological changes (Berntson and Bazzaz, 1996; Hungate et al,, 1997).

Finally but not least is the simulation of N dynamics between plants and soil,
essential for the simulation of plant growth limitation by N stress. Usually, a re-
duction factor on plant growth is activated when the simulated N concentrations
in some plant organs Cross a threshold value —the higher the N deficit in the or-
gan, the more pronounced the reduction on growth. The relationship between the
reduction factor and the N deficit is not linear and varies among plants (Cabel-
guenne et al,, 1999). The form of the relationship is important but is usually not
reported in publications, as if this aspect of the agroecosystem dynarmics were not
important. Also often omitted in publications is a description of the algorithms
used to treat the interaction between water and N stress, which, of course, varies
with plants. Another aspect of the soil-plant interaction that is not considered by
modelers is the impact of root N exudation on plant growth, although some mod-
els do consider the impact of C exudation on the SOM C and N turnover (Bottner
et al,, 1999; Kuzyakov and Domanski, 2000; Molina et al., 2001;). The recycling of
N root exudation back into the same plant has been documented (Jimenez et al.,
2002). Information about the rates of this N feedback loop would be best treated

by simulation modeling.
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